181 research outputs found

    Non-cellulosic polysaccharides from cotton fibre are differently impacted by textile processing.

    Get PDF
    Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non-cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being removed during bleaching and scouring. However, some forms of pectin are more resistant than others. Xylan and xyloglucan are affected in later processing steps and to a lesser extent, whereas callose showed a strong resistance to the chemical processing steps. This study shows that non-cellulosic polysaccharides are differently impacted by the treatments used in cotton textile processing with some hemicelluloses and callose being resistant to these harsh treatments

    Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns.

    Get PDF
    Background: While it is known that complex tissues with specialized functions emerged during land plant evolution, it is not clear how cell wall polymers and their structural variants are associated with specific tissues or cell types. Moreover, due to the economic importance of many flowering plants, ferns have been largely neglected in cell wall comparative studies. Resutls: To explore fern cell wall diversity sets of monoclonal antibodies directed to matrix glycans of angiosperm cell walls have been used in glycan microarray and in situ analyses with 76 fern species and four species of lycophytes. All major matrix glycans were present as indicated by epitope detection with some variations in abundance. Pectic HG epitopes were of low abundance in lycophytes and the CCRC-M1 fucosylated xyloglucan epitope was largely absent from the Aspleniaceae. The LM15 XXXG epitope was detected widely across the ferns and specifically associated with phloem cell walls and similarly the LM11 xylan epitope was associated with xylem cell walls. The LM5 galactan and LM6 arabinan epitopes, linked to pectic supramolecules in angiosperms, were associated with vascular structures with only limited detection in ground tissues. Mannan epitopes were found to be associated with the development of mechanical tissues. We provided the first evidence for the presence of MLG in leptosporangiate ferns. Conclusions: The data sets indicate that cell wall diversity in land plants is multifaceted and that matrix glycan epitopes display complex spatio-temporal and phylogenetic distribution patterns that are likely to relate to the evolution of land plant body plans

    Metabolism of polysaccharides in dynamic middle lamellae during cotton fibre development

    Get PDF
    Main conclusion: Evidence is presented that cotton fibre adhesion and middle lamella formation are preceded by cutin dilution and accompanied by rhamnogalacturonan-I metabolism. Cotton fibres are single cell structures that early in development adhere to one another via the cotton fibre middle lamella (CFML) to form a tissue-like structure. The CFML is disassembled around the time of initial secondary wall deposition, leading to fibre detachment. Observations of CFML in the light microscope have suggested that the development of the middle lamella is accompanied by substantial cell-wall metabolism, but it has remained an open question as to which processes mediate adherence and which lead to detachment. The mechanism of adherence and detachment were investigated here using glyco-microarrays probed with monoclonal antibodies, transcript profiling, and observations of fibre auto-digestion. The results suggest that adherence is brought about by cutin dilution, while the presence of relevant enzyme activities and the dynamics of rhamnogalacturonan-I side-chain accumulation and disappearance suggest that both attachment and detachment are accompanied by rhamnogalacturonan-I metabolism

    Arabinogalactan-protein and pectin epitopes in relation to an extracellular matrix surface network and somatic embryogenesis and callogenesis in Trifolium nigrescens Viv

    Get PDF
    The formation of an extracellular matrix surface network (ECMSN), and associated changes in the distribution of arabinogalactan-protein and pectin epitopes, have been studied during somatic embryogenesis (SE) and callogenesis of Trifolium nigrescens Viv. Scanning electron microscopy observations revealed the occurrence of an ECMSN on the surface of cotyledonary-staged somatic embryos as well as on the peripheral, non-regenerating callus cells. The occurrence of six AGP (JIM4, JIM8, JIM13, JIM16, LM2, MAC207) and four pectin (JIM5, JIM7, LM5, LM6) epitopes was analysed during early stages of SE, in cotyledonary-staged somatic embryos and in non-embryogenic callus using monoclonal antibodies. The JIM5 low methyl-esterified homogalacturonan (HG) epitope localized to ECMSN on the callus surface but none of the epitopes studied were found to localize to ECMSN over mature somatic embryos. The LM2 AGP epitope was detected during the development of somatic embryos and was also observed in the cell walls of meristematic cells from which SE was initiated. The pectic epitopes JIM5, JIM7, LM5 and LM6 were temporally regulated during SE. The LM6 arabinan epitope, carried by side chains of rhamnogalacturonan-I (RG-I), was detected predominantly in cells of embryogenic swellings, whilst the LM5 galactan epitope of RG-I was uniformly distributed throughout the ground tissue of cotyledonary-staged embryoids but not detected at the early stages of SE. Differences in the distribution patterns of low and high methyl-esterified HG were detected: low ester HG (JIM5 epitope) was most abundant during the early steps of embryo formation and highly methyl-esterified form of HG (JIM7 epitope) became prevalent during embryoid maturation

    Analyses and localization of pectin-like carbohydrates in cell wall and mucilage of the green alga Netrium digitus

    Get PDF
    The unicellular, simply shaped desmid Netrium digitus inhabiting acid bog ponds grows in two phases. Prior to division, the cell elongates at its central zone, whereas in a second phase, polar tip growth occurs. Electron microscopy demonstrates that Netrium is surrounded by a morphologically homogeneous cell wall, which lacks pores. Immunocytochemical and biochemical analyses give insight into physical wall properties and, thus, into adaptation to the extreme environment. The monoclonal antibodies JIM5 and JIM7 directed against pectic epitopes with different degrees of esterification label preferentially growing wall zones in Netrium. In contrast, 2F4 marks the cell wall only after experimental de-esterification. Electron energy loss spectroscopy reveals Ca-binding capacities of pectins and gives indirect evidence for the degree of their esterification. An antibody raised against Netrium mucilage is not only specific to mucilage but also recognizes wall components in transmission electron microscopy and dot blots. These results indicate a smooth transition between mucilage and the cell wall in Netrium

    Branched Pectic Galactan in Phloem-Sieve-Element Cell Walls: Implications for Cell Mechanics

    Get PDF
    A major question in plant biology concerns the specification and functional differentiation of cell types. This is in the context of constraints imposed by networks of cell walls that both adhere cells and contribute to the form and function of developing organs. Here, we report the identification of a glycan epitope that is specific to phloem sieve element cell walls in several systems. A monoclonal antibody, designated LM26, binds to the cell wall of phloem sieve elements in stems of Arabidopsis (Arabidopsis thaliana), Miscanthus x giganteus, and notably sugar beet (Beta vulgaris) roots where phloem identification is an important factor for the study of phloem unloading of Suc. Using microarrays of synthetic oligosaccharides, the LM26 epitope has been identified as a β-1,6-galactosyl substitution of β-1,4-galactan requiring more than three backbone residues for optimized recognition. This branched galactan structure has previously been identified in garlic (Allium sativum) bulbs in which the LM26 epitope is widespread throughout most cell walls including those of phloem cells. Garlic bulb cell wall material has been used to confirm the association of the LM26 epitope with cell wall pectic rhamnogalacturonan-I polysaccharides. In the phloem tissues of grass stems, the LM26 epitope has a complementary pattern to that of the LM5 linear β-1,4-galactan epitope, which is detected only in companion cell walls. Mechanical probing of transverse sections of M. x giganteus stems and leaves by atomic force microscopy indicates that phloem sieve element cell walls have a lower indentation modulus (indicative of higher elasticity) than companion cell walls

    Developmental Localization and Methylesterification of Pectin Epitopes during Somatic Embryogenesis of Banana (Musa spp. AAA)

    Get PDF
    The plant cell walls play an important role in somatic embryogenesis and plant development. Pectins are major chemical components of primary cell walls while homogalacturonan (HG) is the most abundant pectin polysaccharide. Developmental regulation of HG methyl-esterification degree is important for cell adhesion, division and expansion, and in general for proper organ and plant development.Developmental localization of pectic homogalacturonan (HG) epitopes and the (1→4)-β-D-galactan epitope of rhamnogalacturonan I (RG-I) and degree of pectin methyl-esterification (DM) were studied during somatic embryogenesis of banana (Musa spp. AAA). Histological analysis documented all major developmental stages including embryogenic cells (ECs), pre-globular, globular, pear-shaped and cotyledonary somatic embryos. Histochemical staining of extracellularly secreted pectins with ruthenium red showed the most intense staining at the surface of pre-globular, globular and pear-shaped somatic embryos. Biochemical analysis revealed developmental regulation of galacturonic acid content and DM in diverse embryogenic stages. Immunodots and immunolabeling on tissue sections revealed developmental regulation of highly methyl-esterified HG epitopes recognized by JIM7 and LM20 antibodies during somatic embryogenesis. Cell walls of pre-globular/globular and late-stage embryos contained both low methyl-esterified HG epitopes as well as partially and highly methyl-esterified ones. Extracellular matrix which covered surface of early developing embryos contained pectin epitopes recognized by 2F4, LM18, JIM5, JIM7 and LM5 antibodies. De-esterification of cell wall pectins by NaOH caused a decrease or an elimination of immunolabeling in the case of highly methyl-esterified HG epitopes. However, immunolabeling of some low methyl-esterified epitopes appeared stronger after this base treatment.These data suggest that both low- and highly-methyl-esterified HG epitopes are developmentally regulated in diverse embryogenic stages during somatic embryogenesis. This study provides new information about pectin composition, HG methyl-esterification and developmental localization of pectin epitopes during somatic embryogenesis of banana

    Developmental features of cotton fibre middle lamellae in relation to cell adhesion and cell detachment in cultivars with distinct fibre qualities.

    Get PDF
    Background: Cotton fibre quality traits such as fibre length, strength, and degree of maturation are determined by genotype and environment during the sequential phases of cotton fibre development (cell elongation, transition to secondary cell wall construction and cellulose deposition). The cotton fibre middle lamella (CFML) is crucial for both cell adhesion and detachment processes occurring during fibre development. To explore the relationship between fibre quality and the pace at which cotton fibres develop, a structural and compositional analysis of the CFML was carried out in several cultivars with different fibre properties belonging to four commercial species: Gossypium hirsutum, G. barbadense, G. herbaceum and G. arboreum. Results: Cotton fibre cell adhesion, through the cotton fibre middle lamella (CFML), is a developmentally regulated process determined by genotype. The CFML is composed of de-esterified homogalacturonan, xyloglucan and arabinan in all four fibre-producing cotton species: G. hirsutum, G. barbadense, G. herbaceum and G. arboreum. Conspicuous paired cell wall bulges are a feature of the CFML of two G. hirsutum cultivars from the onset of fibre cell wall detachment to the start of secondary cell wall deposition. Xyloglucan is abundant in the cell wall bulges and in later stages pectic arabinan is absent from these regions. Conclusions: The CFML of cotton fibres is re-structured during the transition phase. Paired cell wall bulges, rich in xyloglucan, are significantly more evident in the G. hirsutum cultivars than in other cotton species

    Monoclonal antibodies directed to fucoidan preparations from brown algae

    Get PDF
    Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance
    corecore